Hao ZHENG

E-mail: <u>zheng.h.ad@m.titech.ac.jp</u>

Educational Background

2021.04 — Present	Tokyo Institute of Technology	Artificial Intelligence	Ph.D.
Research field: Few-shot			
2019.09 — 2020.11	The Chinese University of Hong Kong	Computer Science	M.Sc
Main curriculum: Data mining, Machine learning, HCI system			
2015.09 — 2019.06	Nanjing University of Science and Technology	Automation	<i>B.E.</i>
Main curriculum: Digital image processing, Calculus, Probability and Statistics			
Graduation Project: Face	anti-spoofing (Outstanding Graduation Project)		
D-1.1: 4:			

Publication

- · <u>Hao Zheng</u>*, Runqi Wang*, Jianzhuang Liu, Asako Kanezaki. Cross-Level Distillation and Feature Denoising for Cross-Domain Few-Shot Classification. (**Accepted by ICLR 2023**, first author)
- · Runqi Wang*, <u>Hao Zheng</u>*, Xiaoyue Duan, Jianzhuang Liu, Yuning Lu, Tian Wang, Songcen Xu, Baochang Zhang. Few-Shot Learning with Visual Distribution Calibration and Cross-Modal Distribution Alignment. (**Accepted by CVPR 2023**, co-first author)
- · <u>Hao Zheng</u>, Qiang Zhang, Asako Kanezaki. DAC: Disentanglement-and-Calibration Module for Cross-Domain Few-Shot Classification. (Accepted by IEEE Access)
- · <u>Hao Zheng</u>, other anonymous authors. SEFAR: SparsE-FeAture-based Regularization for Fine-tuning on Limited Downstream Data. (Submitted to ICLR 2024)
- · Yuchen Che, <u>Hao Zheng</u>, Asako Kanezaki. COPRA: Confidence-weighted Partial Reconstruction and Alignment for Category-level 6D Object Pose Estimation. (Submitted to ICRA 2024)

Partial Research Experience

Few-Shot Classification Based on Distilling Pretrained Models:

- To address the significant domain gap, we propose a cross-layer feature distillation approach that allows the student model to integrate the prior knowledge of the pre-trained model better.
- · To mitigate overfitting, we propose Feature Denoising, which adaptively sparsifies features without introducing additional parameters.
- · On the EuroSAT dataset, there is an improvement of 9.38% (1-shot) and 3.82% (5-shot). This paper is accepted by ICLR 2023.
- · In subsequent experiments, including scenarios such as Simulation-to-Reality, CLD can consistently accelerate network convergence and improve performance.

Few-Shot Classification Based on Multimodal Large Models:

- · To address imperfect alignment between CLIP's image and text features, we introduce Vision-Language Prototype (VLP) to assist in cross-modal alignment.
- · To mitigate overfitting, we propose a method of grouped data augmentation that extends the number of data pairs.
- · In order to remove the classification-irrelevant information, we design Selective Attack, which adds perturbation to the classification-irrelevant parts to reduce their impact on the classification results.
- · We conduct experiments on 11 datasets and achieve the SOTA performance. This paper is accepted by CVPR 2023.

Self-Distillation-Based Regularization for Fine-tuning on limited data:

· We leverage the results generated by sparse features to self-distill the results produced by complete features. It can significantly enhance the performance of many fine-tuning methods when there is a limited amount of downstream data available. This work is submitted to ICLR 2024.

Provided Service

NeuIPS 2023 Reviewer ICLR 2024 Reviewer ICRA 2024 Reviewer

Honor